

Farmaci "vecchi e nuovi" disponibili per il controllo della malattia metabolica dell'osso Maurizio Gallieni



#### Modificata da Sharon M. Moe

# Obiettivi terapeutici e potenziali esiti clinici nella CKD-MBD

| <ul> <li>Riduzione dell'assorbimento<br/>dietetico di fosforo, del<br/>sovraccarico di fosforo e<br/>della fosfatemia</li> </ul> |            |       | nto • | <ul> <li>Rallentamento progressione<br/>CKD, riduzione della massa<br/>ventricolare sinsitra; riduzione<br/>eventi CV, riduzione mortalità.</li> </ul> |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • Con                                                                                                                            | trollo PTH |       | •     | Riduzione eventi CV, riduzione<br>anomalie del rimaneggiamento<br>osseo e fratture                                                                     |  |
| • Ridu                                                                                                                           | zione FGF  | 23 ?? | •     | Riduzione eventi CV, riduzione mortalità                                                                                                               |  |
|                                                                                                                                  |            |       |       |                                                                                                                                                        |  |

 Evitare sovraccarico di calcio e ipercalcemia

 Riduzione calcificazioni vascolari ed eventi CV

## Obiettivi terapeutici: livello di PTH in emodialisi

The recently updated Kidney Disease: Improving Global Outcomes (KDIGO) guidelines\* on CKD-MBD do not identify a specific serum PTH level for patients with CKD receiving hemodialysis, but instead recommend maintaining PTH levels in the range of two to nine times the upper limit of normal for the assay and state that trending elevations in PTH should be addressed prior to reaching the threshold of nine times the upper limit of normal

\* KDIGO Workgroup. KDIGO 2017 Clinical Practice Guideline update for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2017; 7: 1–59



## **P-binders and survival on Hemodialysis**



T. Isakova JASN 2008

#### P-binders and survival on Hemodialysis



Figure 2. (A through E) Survival of treated and untreated patients in the overall propensity score–matched cohort (A) and according sus Binder to quartiles of baseline serum phosphate: <3.7 mg/dl (B), 3.7 to 4.5 mg/dl (C), 4.6 to 5.5 mg/dl (D), and ≥5.6 mg/dl (E). T. Isakova JASN 2008

# **Therapeutic options for hyperphosphatemia in SHPT**

**1.** Restriction of dietary phosphorus

**2.** Administration of phosphorus binders

**Calcium-containing binders** 

**Calcium carbonate** 

**Calcium acetate** 

Calcium acetate/magnesium carbonate

**Calcium-free binders** 

Sevelamer hydrochloride/carbonate

Lanthanum carbonate

Iron-based compounds

Colestilan

Niacine/niacinamide

**3.** Increase frequency of dialysis sessions

Rodríguez M, et al. Expert Opin Pharmacother 2015;16:1703–1716.

# **Phosphate binders: Use and mode of action**

- Administered when dietary phosphate restrictions are inadequate to control serum levels of phosphorus
- Bind to phosphate in the gastrointestinal tract to prevent absorption of phosphate molecules contained in food
- Administered with meals. Number of pills directly proportional to the size of meals
- Phosphate binders do not influence the phosphorus that is already absorbed or released from bone











## Mode of action of 1,25-dihydroxyvitamin D



Redrawn from: Heaney RP. Clin J Am Soc Nephrol 2008;3:1535-1541; K/DOQI Clinical Practice Guidelines Am J Kindey Dis 2003;42(Suppl 3).

## Vitamin D analogs lower PTH and raise serum Ca and P



Error bars represent 95% confidence intervals Tentori F, et al. Kidney Int 2006;70:1858–1865.

### Vitamin D analogues increase plasma FGF23 in hemodialysis patients



Serum samples were collected at the beginning (6 and 22 weeks) and at the end (28 and 44 weeks) of each treatment period, interrupted by a 6-week washout period. Adapted from: Hansen D, et al. Nephrol Dial Transplant 2012;27:2263–2269.

#### Summary of traditional treatment approaches to the management of SHPT

The combined use of vitamin D and phosphate binders often does not adequately control PTH levels



Treatment approach = vitamin D + phosphate binders as first-line therapy; cinacalcet later in the course of therapy.

Adapted from: Tomasello S. Diabetes Spectrum 2008;21:19–25.

## Limitations of vitamin D and phosphate binders

- Vitamin D
  - Parathyroid gland hyperplasia leads to reduced vitamin D receptor and calcium receptor expression which may limit efficacy of vitamin D<sup>1</sup>
  - Hypercalcemia and hyperphosphatemia
    - High phosphorus increases PTH<sup>2</sup>
    - Risk for vascular calcification<sup>3,4</sup>
- Phosphate binders
  - Effective, but can be associated with poor compliance<sup>5</sup>
  - No effect on bone-released phosphorus<sup>5</sup>
  - High-dose calcium-containing binders increase Ca<sup>2+</sup> load and could raise risk of cardiovascular calcifications<sup>4</sup>

<sup>1.</sup> Fukuda N, et al. J Clin Invest 1993;92:1436–1443; 2. Tallon S, et al. Kidney Int 1996;49:1441–1446;

<sup>3.</sup> Jono S, et al. Circulation 1998;98:1302–1306; 4. Goodman WG, et al. N Engl J Med 2000;342:1478–1483;

<sup>5.</sup> National Kidney Foundation. Am J Kidney Dis 2003;42(suppl 3):S1–S201.

### Terapia della CKD-MBD

Chelanti del fosforo

Vitamina D e attivatori del recettore della vitamina D

Calciomimetici

Etelcalcetide

Meccanismo d'azione

# **Calcimimetics specifically activate the CaSR**

- Inhibit PTH secretion
  - Promptly lower plasma PTH levels, the main biochemical feature of HPT
  - Effective in all types of HPT
- Diminish PTH gene expression (mRNA)
  - Reduce PTH production
  - Less hormone available for secretion
  - Potentially important in patients with enlarged parathyroid glands
- Retard development of parathyroid gland hyperplasia
  - Key determinant of the severity of SHPT
  - May alter disease progression over time
  - Reduce the need for surgical parathyroidectomy

# Calcimimetics can simultaneously reduce PTH, Ca and phosphate compared with vitamin D therapy



Moe SM, et al. Kidney Int 2005;67:760–771.

# **Cinacalcet reduced PTH, calcium, phosphorus and Ca x P**



Adapted from: Moe SM, et al. Kidney Int 2005;67:760–771 and National Kidney Foundation. Am J Kidney Dis 2003;42:S1–S201

# ADVANCE study: Impact of cinacalcet on vascular / valvular calcification in hemodialysis patients



D: study day; MDCT: multi detector computerised tomography; W: study week

Raggi P, et al. Nephrol Dial Transplant 2011;26:1327–1339.

## ADVANCE: Cinacalcet may attenuate vascular / valvular calcification in haemodialysis patients



## **EVOLVE study design Impact of cinacalcet on cardiovascular events**

Primary composite endpoint: Time to death or the first nonfatal cardiovascular event



- Multicentre, prospective, randomised, double-blind, placebo-controlled trial
- Starting dose of 30 mg once daily
- Possible sequential doses of cinacalcet or placebo included 60, 90, 120, and 180 mg
- All patients could receive vitamin D sterols and phosphate binders, as necessary, at the discretion of the physician
- Anticipated study duration = 4 years
- Actual study duration > 5 years

The EVOLVE Trial Investigators. *N Engl J Med*. 2012;367:2482–2494 Adapted from: The EVOLVE Trial Investigators [Supplementary Appendix]. N Engl J Med 2012;1-54.

## Time to the primary composite endpoint in EVOLVE was not significant: ITT Analysis

Primary composite endpoint: death, myocardial infarction, hospitalization for unstable angina, heart failure, or peripheral vascular event



Adapted from The EVOLVE Trial Investigators. *N Engl J Med*. 2012;367:2482-2494. The cinacalcet and placebo groups included vitamin D and phosphate binders, if prescribed. The EVOLVE Trial Investigators. *N Engl J Med*. 2012;367:2482-2494.

# **Limitations of cinacalcet**

#### Side effects

- Gastrointestinal problems including nausea and vomiting are very common<sup>1</sup>
- GI problems are the predominant reason for discontinuation due to undesirable effects
- Cinacalcet treatment may result in hypocalcaemia in some patients<sup>1</sup>

#### Pill burden

- Pill burden of patients undergoing dialysis is high, and patients are at high risk of non-adherence<sup>2-4</sup>
- Adherence to cinacalcet<sup>5-7</sup>: 29–54%



1. Mimpara<sup>®</sup> (cinacalcet) Summary of Product Characteristics, Amgen; 2. Chiu YW, et al. Clin J Am Soc Nephrol 2009;4:1089–1096; 3. Neri L, et al. Am J Nephrol 2011;34:71–76; 4. Ghimire S, et al. Am J Nephrol 2016;43:318–324; 5. Gincherman Y, et al. Hemodial Int 2010;14:68–72; 6. Lee A, et al. J Med Econ 2011;14:798–804; 7. Park H, et al. J Manag Care Spec Pharm 2014;20:862–876.

#### Terapia della CKD-MBD

Chelanti del fosforo

Vitamina D e attivatori del recettore della vitamina D

Calciomimetici

Etelcalcetide

Meccanismo d'azione

## **Comparison of the modes of action of cinacalcet and etelcalcetide**

|                       | Cinacalcet <sup>1-3</sup>                                                                                                   | Etelcalcetide <sup>4-10</sup>                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Class                 | Calcimimetic                                                                                                                | Calcimimetic                                                                                                            |
| Compound              | Small organic molecule;<br>molecular weight = 393.9 g/mol                                                                   | Synthetic 8-amino acid peptide<br>(comprised primarily of D amino<br>acids)                                             |
| Mode of<br>action     | Interacts with membrane-spanning<br>segments of CaSR and enhances<br>signal transduction, thereby<br>reducing PTH secretion | Interacts with the extracellular<br>domain of CaSR to enhance signal<br>transduction, thereby reducing<br>PTH secretion |
| Duration<br>of action | Short acting                                                                                                                | Long acting                                                                                                             |

1. Mimpara<sup>®</sup> (cinacalcet) Summary of Product Characteristics, Amgen; 2. Goodman WG. Adv Ren Replace Ther 2002;9:200–208; 3. Srinivas TR, et al. Clin J Am Soc Nephrol 2006;1:323–326; 4. Cunningham J, et al. Presented at the 52<sup>nd</sup> ERA-EDTA Congress; May 2015; London, UK; 5. Chen P, et al. J Clin Pharmacol 2015;55:620–628; 6. Goodman WG, et al. Kidney Int 2008;74:276–288; 7. Moallem E, et al. J Biol Chem 1998;273:5253–5259; 8. Brown EM. Rev Endocr Metab Disord 2000;1:307–315; 9. Walter S, et al. J Pharmacol Exp Ther 2013;346:229–240; 10. Parsabiv<sup>®</sup> (etelcalcetide) Summary of Product Charactersitics, Amgen.

## **Etelcalcetide, new i.v. calcimimetic - Mode of action**



## Metabolism and clearance of etelcalcetide differs substantially from cinacalcet

- Renal excretion vs hepatic metabolism
  - Cinacalcet is metabolised by multiple enzymes, predominantly CYP3A4 and CYP1A2<sup>1</sup>
  - Etelcalcetide is not metabolised by CYP450 enzymes<sup>2</sup>
  - Etelcalcetide is rapidly cleared in subjects with normal renal function<sup>2</sup>
- Extended half-life of etelcalcetide occurs only among subjects with marked impairments in kidney function<sup>2</sup>

1. Mimpara<sup>®</sup> (cinacalcet) Summary of Product Characteristics, Amgen; 2. Etelcalcetide Summary of Product Characteristics, Amgen.

## Terapia della CKD-MBD

Chelanti del fosforo

Vitamina D e attivatori del recettore della vitamina D

Calciomimetici

Etelcalcetide

Meccanismo d'azione

Studi clinici

# **Etelcalcetide: studi clinici**

- 1. Etelcalcetide versus Placebo. Block et al. JAMA. 2017;317(2):146-155
- 2. Etelcalcetide versus Cinacalcet. Block et al. JAMA. 2017;317(2):156-164
- **3. Etelcacetide open-label extension (OLE) trial. Bushinsky et al. Nephrol Dial** Transplant (2019)



#### JAMA | Original Investigation

# Effect of Etelcalcetide vs Placebo on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism Two Randomized Clinical Trials

Geoffrey A. Block, MD; David A. Bushinsky, MD; John Cunningham, DM; Tilman B. Drueke, MD; Markus Ketteler, MD; Reshma Kewalramani, MD; Kevin J. Martin, MB, BCh; T. Christian Mix, MD; Sharon M. Moe, MD; Uptal D. Patel, MD; Justin Silver, MD; David M. Spiegel, MD; Lulu Sterling, PhD; Liron Walsh, MD; Glenn M. Chertow, MD, MPH

### **Key Points**

**Question** What is the effect of the intravenous calcimimetic etelcalcetide compared with placebo on serum parathyroid hormone concentrations in patients receiving hemodialysis?

Findings In 2 randomized clinical trials that included 1023 adults receiving hemodialysis with moderate to severe secondary hyperparathyroidism, patients randomized to etelcalcetide compared with placebo were significantly more likely to have a greater than 30% reduction in mean parathyroid hormone concentrations over 26 weeks (74.0% vs 8.3% and 75.3% vs 9.6%).

#### Mean Percentage Change From Baseline by Study Week in PTH Concentrations by Randomized Group in Each Trial



No. of patients

 Etelcalcetide
 251
 230
 221
 223
 224
 218
 217
 218
 216
 215
 210
 207
 217

 Placebo
 254
 244
 242
 235
 230
 229
 229
 222
 216
 205
 198
 191
 183
 182
 191

252 238 229 232 226 229 226 222 220 218 209 211 206 198 204 259 246 246 245 241 237 227 235 224 222 218 211 200 186 201

### Mean Percentage Change From Baseline by Study Week in Corrected Calcium Concentrations by Randomized Group in Each Trial



No. of patients

 Etelcalcetide
 251
 237
 237
 229
 232
 225
 219
 217
 222
 219
 217
 212
 211
 206
 216

 Placebo
 254
 248
 245
 235
 233
 230
 228
 225
 216
 209
 200
 193
 181
 191

 252
 242
 240
 235
 231
 227
 225
 223
 218
 214
 212
 210
 197
 206

 259
 248
 253
 246
 244
 240
 232
 235
 230
 222
 218
 211
 198
 184
 203

#### Mean Percentage Change From Baseline by Study Week in Phosphate Concentrations by Randomized Group in Each Trial



No. of patients

 Etelcalcetide
 248
 234
 233
 227
 228
 223
 219
 217
 220
 216
 215
 211
 210
 194
 215

 Placebo
 250
 244
 241
 231
 228
 224
 224
 223
 214
 205
 195
 190
 182
 175
 190

248 239 236 229 233 229 224 222 220 220 210 209 207 190 205 256 246 249 244 242 238 230 234 227 219 216 208 197 175 199

### Serum Intact Fibroblast Growth Factor 23 (FGF23) Concentrations at Baseline, Week 12, and Week 27 by Randomized Group in Each Trial



Closed circles represent means; solid lines, medians; boxes, interquartile ranges; whiskers, 1.5 times interquartile ranges; and top and bottom open circles, maximum and minimum observations.

### Median Percentage Change From Baseline in Serum Intact Fibroblast Growth Factor 23 (FGF23) at Weeks 12 and 27 by Randomized Group in Each Trial



Error bars indicate interquartile ranges.

JAMA | Original Investigation

# Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism A Randomized Clinical Trial

Geoffrey A. Block, MD; David A. Bushinsky, MD; Sunfa Cheng, MD; John Cunningham, MD; Bastian Dehmel, MD; Tilman B. Drueke, MD; Markus Ketteler, MD; Reshma Kewalramani, MD; Kevin J. Martin, MB, BCh; Sharon M. Moe, MD; Uptal D. Patel, MD; Justin Silver, MD; Yan Sun, MS; Hao Wang, PhD; Glenn M. Chertow, MD, MPH

#### **Key Points**

Question What is the effect of the intravenous calcimimetic etelcalcetide compared with the oral calcimimetic cinacalcet on serum parathyroid hormone (PTH) concentrations in patients receiving hemodialysis?

Findings In a randomized clinical trial that included 683 adults receiving hemodialysis with PTH levels higher than 500 pg/mL, 68.2% of patients randomized to receive etelcalcetide vs 57.7% randomized to receive cinacalcet experienced more than a 30% reduction in mean PTH concentrations over 27 weeks, a significant difference.

Meaning Etelcalcetide was more effective than cinacalcet in lowering PTH concentrations in patients receiving dialysis with secondary hyperparathyroidism receiving hemodialysis, but further research is needed to assess clinical outcomes as well as longer-term efficacy and safety.

#### Parathyroid Hormone Concentrations in Patients Receiving Cinacalcet or Etelcalcetide by Study Week



7

7

No. of patients

 Etelcalcetide
 338
 293
 300
 304
 303
 291
 288
 288
 277
 270
 256
 265
 255
 276

 Cinacalcet
 341
 286
 300
 302
 308
 299
 302
 298
 291
 291
 293
 288
 283
 274
 289

293 300 304 303 291 288 288 277 277 270 256 265 255 276 286 300 302 308 299 302 298 291 291 293 288 283 274 289

#### Calcium, and Phosphate Concentrations in Patients Receiving Cinacalcet or Etelcalcetide by Study Week



#### **Etelcalcetide and Cinacalcet Dosing**

The median average weekly etelcalcetide dose during the efficacy assessment phase was 15.0 mg (interquartile range [IQR], 9.2-30.0 mg) and the median average daily cinacalcet dose was 51.4 mg (IQR, 26.4-80.4 mg).

#### Self-reported Nausea and Vomiting

The adjusted mean [SE] weekly days of vomiting or nausea in the first 8 weeks of treatment were not significantly different for patients randomized to etelcalcetide (0.4 [0.04]) and cinacalcet (0.3 [0.03]), corresponding to a rate ratio of 1.20 (95% CI, 0.89-1.49).

#### Adverse Events

Of the 338 patients treated with etelcalcetide, 62 (18.3%) reported nausea and 45 (13.3%), vomiting. Of the 341 patients treated with cincalcet, 77 (22.6%) reported nausea and 47 (13.8%), vomiting. Death occurred in 9 patients (2.7%) in the etelcalcetide-treated group and 6 (1.8%) in the cinacalcet-treated group

#### Heart Failure in Patients Receiving Etelcalcetide or Cinacalcet

- Heart failure events were E: 10 (3.0%) and C: 2 (0.6%), respectively, of which 5 and 1 were considered serious.
- Although there were numerically more episodes of heart failure in the etelcalcetide group, overall event rates were similar to rates observed in the EVOLVE trial.
- Initially, there were concerns that cinacalcet might lead to heart failure and sudden death owing to the effects of reduced serum calcium on myocardial contractility and the QT interval, respectively. However, rates of heart failure and sudden death were reduced in patients randomized to cinacalcet in the EVOLVE trial.



# One-year safety and efficacy of intravenous etelcalcetide in patients on hemodialysis with secondary hyperparathyroidism

David A. Bushinsky<sup>1</sup>, Glenn M. Chertow<sup>2</sup>, Sunfa Cheng<sup>3</sup>, Hongjie Deng<sup>4</sup>, Nelson Kopyt<sup>5</sup>, Kevin J. Martin<sup>6</sup>, Anjay Rastogi<sup>7</sup>, Pablo Ureña-Torres<sup>8</sup>, Marc Vervloet <sup>10</sup>, and Geoffrey A. Block<sup>10</sup>

**Open-label extension (OLE) trial evaluated the long-term (52 wks) effects of etelcalcetide for sHPT treatment in 890 patients receiving hemodialysis.** 

**Conclusions.** Etelcalcetide effectively lowered PTH and its effect was sustained, while no new safety concerns emerged over a 1-year treatment period.

| Characteristic        | Etelcalcetide $(n = 891)$ |
|-----------------------|---------------------------|
| Ser 11 (%)            |                           |
| M-1-                  | EE0 (617)                 |
| Iviale                | 550 (61.7)                |
| Female                | 341 (38.3)                |
| Race, n (%)           |                           |
| White                 | 567 (63.6)                |
| Black                 | 270 (30.3)                |
| Asian                 | 29 (3.3)                  |
| Other                 | 25 (2.7)                  |
| Age, mean (SD), years | 58.3 (14.4)               |
| <65, n (%)            | 577 (64.8)                |
| $\geq 65, n$ (%)      | 314 (35.2)                |
| $\geq 75, n$ (%)      | 125 (14.0)                |

#### Table 1. Baseline demographics and clinical characteristics

| Characteristic               | Etelcalcetide $(n = 891)$ |
|------------------------------|---------------------------|
| Baseline PTH, n (%)          |                           |
| <600 pg/mL                   | 405 (45.5)                |
| 600-1000 pg/mL               | 221 (24.8)                |
| >1000 pg/mL                  | 228 (25.6)                |
| Missing                      | 37 (4.2)                  |
| Laboratory values, mean (SD) |                           |
| PTH, pg/mL                   | 770 (574)                 |
| Ca, mg/dL                    | 9.7 (0.7)                 |
| P, mg/dL                     | 5.6 (1.8)                 |
| $Ca \times P, mg^2/dL^2$     | 54.4 (17.2)               |

#### Table 1. Baseline demographics and clinical characteristics

# Proportion of patients receiving each dose level of etelcalcetide (mg/session) at selected visits.



#### **Concomitant medication use during the open-label extension (OLE) trial**



# Results

- Approximately 68% of patients achieved >30% reduction in PTH, and 56% achieved PTH <300 pg/mL.</li>
- Mean percent changes from baseline ranged from -25.4% to -26.1% for PTH, -8.3% to -9.1% for Ca, -3.6% to -4.1% for P
- Overall, 89.8% of the patients experienced one or more treatment-emergent AE:
  - decreased blood Ca (43.3%)
  - diarrhea (10.8%)
  - vomiting (10.4%) and nausea (9.6%);
  - symptomatic hypocalcemia occurred in 3.7% of the patients.

#### Table 2. AEs

| AEs, n (%) [rate per 100 patient-years]                  | OLE trial<br>Etelcalcetide<br>(n = 890) | Placebo-controlled trials<br>Etelcalcetide<br>(n = 503) |
|----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| All treatment-emergent AEs                               | 799 (89.8) [356.9]                      | 461 (91.7) [712.6]                                      |
| SAEs                                                     | 356 (40.0) [55.4]                       | 130 (25.8) [56.5]                                       |
| Treatment-related SAE                                    | 13 (1.5) [1.6]                          | 8 (1.6) [3.0]                                           |
| AE leading to discontinuation of etelcalcetide           | 41 (4.6) [4.9]                          | 9 (1.8) [3.4]                                           |
| Fatal AEs                                                | 51 (5.7) [6.1]                          | 11 (2.2) [4.1]                                          |
| Common AEs (patient incidence $\geq$ 5% in either group) |                                         |                                                         |
| Blood calcium decreased (asymptomatic) <sup>a</sup>      | 385 (43.3) [69.1]                       | 321 (63.8) [240.3]                                      |
| Diarrhea                                                 | 96 (10.8) [12.2]                        | 54 (10.7) [21.6]                                        |
| Vomiting                                                 | 93 (10.4) [11.8]                        | 45 (8.9) [17.8]                                         |
| Nausea                                                   | 85 (9.6) [10.7]                         | 54 (10.7) [21.6]                                        |
| Muscle spasms                                            | 79 (8.9) [9.9]                          | 58 (11.5) [23.5]                                        |
| Hypotension                                              | 75 (8.4) [9.3]                          | 30 (6.0) [11.5]                                         |
| AV fistula site complication                             | 68 (7.6) [8.5]                          | 29 (5.8) [11.2]                                         |
| Hypertension                                             | 65 (7.3) [8.1]                          | 31 (6.2) [12.0]                                         |
| Hyperkalemia                                             | 56 (6.3) [6.9]                          | 22 (4.4) [8.4]                                          |
| Upper respiratory tract infection                        | 56 (6.3) [6.9]                          | 21 (4.2) [8.0]                                          |
| Cough                                                    | 55 (6.2) [6.8]                          | 22 (4.4) [8.4]                                          |
| Headache                                                 | 53 (6.0) [6.5]                          | 38 (7.6) [14.9]                                         |
| Back pain                                                | 50 (5.6) [6.1]                          | 22 (4.4) [8.4]                                          |
| Dyspnea                                                  | 50 (5.6) [6.1]                          | 24 (4.8) [9.2]                                          |
| Arthralgia                                               | 49 (5.5) [6.0]                          | 21 (4.2) [8.0]                                          |
| Pain in extremity                                        | 47 (5.3) [5.8]                          | 24 (4.8) [9.2]                                          |
| Fall                                                     | 45 (5.1) [5.5]                          | 15 (3.0) [5.7]                                          |
| Hypocalcemia (symptomatic) <sup>b</sup>                  | 33 (3.7) [4.0]                          | 35 (7.0) [13.7]                                         |

Proportion of patients with low Ca values during the trial for the current OLE study versus the active treatment arm of the placebo-controlled trials.



### Effects of etelcalcetide on PTH, Ca, P during the open-label extension (OLE) trial at 6 and 12 months of treatment

|                                                              | OLE trial Etelcalcetide ( $n = 891$ ) EAP6 | EAP12          |
|--------------------------------------------------------------|--------------------------------------------|----------------|
| $>30\%$ reduction in PTH, $\%$ ( $n/N_1$ )                   | 68.1 (505/742)                             | 67.5 (456/676  |
| PTH $\leq$ 300 pg/mL, % ( <i>n</i> / <i>N</i> <sub>1</sub> ) | 55.5 (431/776)                             | 56.4 (399/708  |
| Median percentage change in PTH, % (n)                       | -51.6 (742)                                | -52.9 (676)    |
| Mean percentage change in PTH, % (n)                         | -25.4 (742)                                | -25.6 (676)    |
| (95% CI)                                                     | (-37.2, -13.5)                             | (-34.6, -16.6) |
| Mean percentage change in Ca, % (n)                          | -9.1 (774)                                 | -8.3 (704)     |
| (95% CI)                                                     | (-9.8, -8.4)                               | (-8.9, -7.6)   |
| Mean percentage change in P, $\%$ (n)                        | -4.1 (743)                                 | -3.6 (703)     |
| (95% CI)                                                     | (-6.6, -1.5)                               | (-6.0, -1.2)   |

# Mean (SE) predialysis PTH concentrations over time during the open-label extension (OLE) trial



#### Mean (SE) predialysis calcium concentrations over time during the openlabel extension (OLE) trial



# Mean (SE) predialysis phosphate concentrations over time during the open-label extension (OLE) trial



# Etelcalcetide open-label extension (OLE) trial Conclusions

- This extension trial is the longest analysis of the use of etelcalcetide in patients receiving dialysis to date.
- The exposure-adjusted rates of serious AEs in this trial, as well as the incidence of hypocalcemia, suggest that the longterm risks associated with etelcalcetide treatment are similar to those observed in the prior shorter term studies.
- Overall, these results indicate that long-term administration of etelcalcetide exhibits a reasonable safety profile with sustained reductions in PTH, Ca and P.